MEC-2 Is Recruited to the Putative Mechanosensory Complex in C. elegans Touch Receptor Neurons through Its Stomatin-like Domain

نویسندگان

  • Shifang Zhang
  • Johanna Arnadottir
  • Charles Keller
  • Guy A. Caldwell
  • C.Andrea Yao
  • Martin Chalfie
چکیده

BACKGROUND The response to gentle body touch in C. elegans requires a degenerin channel complex containing four proteins (MEC-2, MEC-4, MEC-6, and MEC-10). The central portion of the integral membrane protein MEC-2 contains a stomatin-like region that is highly conserved from bacteria to mammals. The molecular function of this domain in MEC-2, however, is unknown. RESULTS Here, we show that MEC-2 colocalizes with the degenerin MEC-4 in regular puncta along touch receptor neuron processes. This punctate localization requires the other channel complex proteins. The stomatin-like region of MEC-2 interacts with the intracellular cytoplasmic portion of MEC-4. Missense mutations in this region that destroy the interaction also disrupt the punctate localization and degenerin-regulating function of MEC-2. Missense mutations outside this region apparently have no effect on the punctate localization but significantly reduce the regulatory effect of MEC-2 on the MEC-4 degenerin channel. A second stomatin-like protein, UNC-24, colocalizes with MEC-2 in vivo and coimmunoprecipitates with MEC-2 and MEC-4 in Xenopus oocytes; unc-24 enhances the touch insensitivity of temperature-sensitive alleles of mec-4 and mec-6. CONCLUSION Two stomatin homologs, MEC-2 and UNC-24, interact with the MEC-4 degenerin through their stomatin-like regions, which act as protein binding domains. At least in the case of MEC-2, this binding allows its nonstomatin domains to regulate channel activity. Stomatin-like regions in other proteins may serve a similar protein binding function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vivo Imaging of C. elegans Mechanosensory Neurons Demonstrates a Specific Role for the MEC-4 Channel in the Process of Gentle Touch Sensation

In the nematode C. elegans, genes encoding components of a putative mechanotransducing channel complex have been identified in screens for light-touch-insensitive mutants. A long-standing question, however, is whether identified MEC proteins act directly in touch transduction or contribute indirectly by maintaining basic mechanoreceptor neuron physiology. In this study, we used the genetically ...

متن کامل

Stomatin and sensory neuron mechanotransduction.

Somatic sensory neurons of the dorsal root ganglia are necessary for a large part of our mechanosensory experience. However, we only have a good knowledge of the molecules required for mechanotransduction in simple invertebrates such as the nematode Caenorhabiditis elegans. In C. elegans, a number of so-called mec genes have been isolated that are required for the transduction of body touch. On...

متن کامل

Extracellular Proteins Organize the Mechanosensory Channel Complex in C. elegans Touch Receptor Neurons

Specialized extracellular matrix (ECM) is associated with virtually every mechanosensory system studied. C. elegans touch receptor neurons have specialized ECM and attach to the surrounding epidermis. The mec-1 gene encodes an ECM protein with multiple EGF and Kunitz domains. MEC-1 is needed for the accumulation of the collagen MEC-5 and other ECM components, attachment, and, separately, for to...

متن کامل

Extracellular Proteins Needed for C. elegans Mechanosensation

The mec-5 and mec-9 genes encode putative extracellular proteins that allow a set of six touch receptor neurons in C. elegans to respond to gentle touch. MEC-5 is a collagen made by the epidermal cells that surround the touch cells. Mutations causing touch insensitivity affect the Gly-X-Y repeats of this collagen. mec-9 produces two transcripts, the larger of which is expressed in the touch cel...

متن کامل

The effects of acid-sensing ion channel ASIC3 and stomatin-like proteins on mechanosensation and nociception

Transformation of mechanical energy into electrical signals in mechanosensory neurons is essential for mechanosensation and nociception. This transformation occurs via sensory transduction channels that are activated by external force. Recent genetic and electrophysiological studies in Caenorhabditis elegans have directly shown that the degenerin/epithelial sodium channel (DEG/ENaC) ion channel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2004